Microorganisms (May 2020)

Diversity of Glutathione S-Transferases (GSTs) in Cyanobacteria with Reference to Their Structures, Substrate Recognition and Catalytic Functions

  • Mohandass ShylajaNaciyar,
  • Lakshmanan Karthick,
  • Peter Arul Prakasam,
  • Garlapati Deviram,
  • Lakshmanan Uma,
  • Dharmar Prabaharan,
  • Sushanta Kumar Saha

DOI
https://doi.org/10.3390/microorganisms8050712
Journal volume & issue
Vol. 8, no. 5
p. 712

Abstract

Read online

Glutathione S-Transferases (GSTs) comprise a diverse group of protein superfamily involved in cellular detoxification of various harmful xenobiotics and endobiotics. Cyanobacteria, being the primordial photosynthetic prokaryotes, served as an origin for the evolution of GSTs with diversity in their structures, substrate recognition, and catalytic functions. This study analysed the diversity of GSTs in cyanobacteria for the first time. Based on the sequence alignment and phylogenetic tree analysis, 12 GST classes were identified, which are distributed variedly within cyanobacterial orders such as four in Pleurocapsales, eight in Chroococcales, seven in Oscillatoriales, five in Stigonematales, and nine in Nostocales. Detailed evolutionary analysis of cyanobacterial GSTs suggested that the order Pleurocapsales served as the ancestry for GST evolution. The analysis also identified a conserved motif S[GLNTARS][ADE]I[LAI] with signature residues, cysteine, serine, and tyrosine at the N-terminal end that serves as the initiating residue for detoxification. Alternatively, the grouping of cyanobacterial GSTs and their unique signature residues were located, which serve as a possible discriminating factor. The study also described the mode of glutathione binding between the identified cyanobacterial GST groups highlighting the differences among the GST classes. New GST sequence data may improve further our understanding on GST evolution and other possible divergences in cyanobacteria.

Keywords