Energies (Jan 2024)

Optimal Design of a Submodule Capacitor in a Modular Multilevel Converter for Medium Voltage Motor Drives

  • Van-Thang Nguyen,
  • Ji-Won Kim,
  • Jae-Woon Lee,
  • Byoung-Gun Park

DOI
https://doi.org/10.3390/en17020471
Journal volume & issue
Vol. 17, no. 2
p. 471

Abstract

Read online

This paper proposes an algorithm for determining the optimal capacitance by utilizing a mathematical model of a submodule (SM) capacitor in a modular multilevel converter (MMC) specifically for medium voltage motor drives (MVDs). By approximating the voltage fluctuation of the SM capacitor during low-frequency operation, it is feasible to ascertain the minimum capacitance required for the SM capacitor, ensuring that its voltage fluctuations remain within an acceptable limit that is predefined as a specified value. Moreover, the study considered the injection of both a high-frequency common-mode voltage (CMV) and a circulating current to alleviate the SM voltage fluctuation during the acceleration of motor drives. The effectiveness of the proposed method is validated through verification using time-domain simulation results obtained using the MATLAB/SIMULINK software and real-time simulation results acquired using the OPAL-RT simulator platform.

Keywords