Molecules (Sep 2024)
Development of a Method for the Determination of Rifaximin and Rifampicin Residues in Foods of Animal Origin
Abstract
Rifaximin and rifampicin are good broad-spectrum antimicrobials. The irrational use of antimicrobial drugs in veterinary clinics could threaten public health and food safety. It is necessary to develop a reliable detection method of the residue for enhancing the rational supervision of the use of such drugs, reducing and slowing down the generation of bacterial resistance, and promoting animal food safety and human health. So, this study developed an LC-MS/MS method for the detection of rifaximin and rifampicin residues in animal-origin foods. The residual rifaximin and rifampicin of homogenized test materials were extracted with acetonitrile-dichloromethane solution or acetonitrile in the presence of anhydrous sodium sulfate and vitamin C, purified by dispersible solid phase extraction, determined by LC-MS/MS, and quantified by the internal standard method. The specificity, sensitivity, matrix effect, accuracy, and precision of the method were investigated in the edible tissues of cattle, swine, or chicken. In addition, the stability of the standard stock solution and the standard working solution was also investigated. The method was suitable for the muscle, liver, kidney, fat, milk, and eggs of cattle, swine, or chicken, as well as fish and shrimp. The specificity of the method was good, and the detection of the analytes was not affected by different matrices. Both the LOD and LOQ of the two analytes were 5 μg/kg and 10 μg/kg, respectively. The results of matrix effects in each tissue were in the range of 80–120%; there were no significant matrix effects. The average accuracy of rifaximin and rifampicin in different foodstuffs of animal origin was between 80% and 120%, and the method precision was below 20% (RSD). The proposed method showed good performance for determination, which could be employed for the extraction, purification, and detection of residual rifaximin and rifampicin in edible animal tissues. The pretreatment procedure of tissue samples was simple and feasible. The method was highly specific, stable, reliable, and with high sensitivity, accuracy, and precision, which met the requirements of quantitative detection of veterinary drug residues.
Keywords