PLoS Computational Biology (May 2024)

Brain2GAN: Feature-disentangled neural encoding and decoding of visual perception in the primate brain.

  • Thirza Dado,
  • Paolo Papale,
  • Antonio Lozano,
  • Lynn Le,
  • Feng Wang,
  • Marcel van Gerven,
  • Pieter Roelfsema,
  • Yağmur Güçlütürk,
  • Umut Güçlü

DOI
https://doi.org/10.1371/journal.pcbi.1012058
Journal volume & issue
Vol. 20, no. 5
p. e1012058

Abstract

Read online

A challenging goal of neural coding is to characterize the neural representations underlying visual perception. To this end, multi-unit activity (MUA) of macaque visual cortex was recorded in a passive fixation task upon presentation of faces and natural images. We analyzed the relationship between MUA and latent representations of state-of-the-art deep generative models, including the conventional and feature-disentangled representations of generative adversarial networks (GANs) (i.e., z- and w-latents of StyleGAN, respectively) and language-contrastive representations of latent diffusion networks (i.e., CLIP-latents of Stable Diffusion). A mass univariate neural encoding analysis of the latent representations showed that feature-disentangled w representations outperform both z and CLIP representations in explaining neural responses. Further, w-latent features were found to be positioned at the higher end of the complexity gradient which indicates that they capture visual information relevant to high-level neural activity. Subsequently, a multivariate neural decoding analysis of the feature-disentangled representations resulted in state-of-the-art spatiotemporal reconstructions of visual perception. Taken together, our results not only highlight the important role of feature-disentanglement in shaping high-level neural representations underlying visual perception but also serve as an important benchmark for the future of neural coding.