International Journal of Nanomedicine (Nov 2022)

Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells

  • Gurunathan S,
  • Kim JH

Journal volume & issue
Vol. Volume 17
pp. 5697 – 5731

Abstract

Read online

Sangiliyandi Gurunathan, Jin Hoi Kim Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, KoreaCorrespondence: Jin Hoi Kim, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea, Tel +82 2 450 3687, Fax +82 2 544 4645, Email [email protected]: Exosomes, which are nanovesicles secreted by almost all the cells, mediate intercellular communication and are involved in various physiological and pathological processes. We aimed to investigate the effects of graphene oxide (GO) on the biogenesis and release of exosomes in human ovarian cancer (SKOV3) cells.Methods: Exosomes were isolated using ultracentrifugation and ExoQuick and characterized by various analytical techniques. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay.Results: Graphene oxide (10– 50 μg/mL), cisplatin (2– 10 μg/mL), and C6-ceramide (5– 25 μM) inhibited the cell viability, proliferation, and cytotoxicity in a dose-dependent manner. We observed that graphene oxide (GO), cisplatin (CIS), and C6-Ceramide (C6-Cer) stimulated acetylcholine esterase and neutral sphingomyelinase activity, total exosome protein concentration, and exosome counts associated with increased level of apoptosis, oxidative stress and endoplasmic reticulum stress. In contrast, GW4869 treatment inhibits biogenesis and release of exosomes. We observed that the human ovarian cancer cells secreted exosomes with typical cup-shaped morphology and surface protein biomarkers. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in GO-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from GO-treated SKOV3 cells than in those isolated from control cells. SKOV3 cells pre-treated with N-acetylcysteine or GW4869 displayed a significant reduction in GO-induced exosome biogenesis and release. Furthermore, endocytic inhibitors decrease exosome biogenesis and release by impairing endocytic pathways.Conclusion: This study identifies GO as a potential tool for targeting the exosome pathway and stimulating exosome biogenesis and release. We believe that the knowledge acquired in this study can be potentially extended to other exosome-dominated pathologies and model systems. Furthermore, these nanoparticles can provide a promising means to enhance exosome production in SKOV3 cells.Keywords: graphene, exosome, oxidative stress, endoplasmic reticulum stress, endocytic pathways, human ovarian cancer cells

Keywords