PLoS ONE (Jan 2020)

Age-related transcriptional modules and TF-miRNA-mRNA interactions in neonatal and infant human thymus.

  • Fernanda Bernardi Bertonha,
  • Silvia Yumi Bando,
  • Leandro Rodrigues Ferreira,
  • Paulo Chaccur,
  • Christiana Vinhas,
  • Maria Claudia Nogueira Zerbini,
  • Magda Maria Carneiro-Sampaio,
  • Carlos Alberto Moreira-Filho

DOI
https://doi.org/10.1371/journal.pone.0227547
Journal volume & issue
Vol. 15, no. 4
p. e0227547

Abstract

Read online

The human thymus suffers a transient neonatal involution, recovers and then starts a process of decline between the 1st and 2nd years of life. Age-related morphological changes in thymus were extensively investigated, but the genomic mechanisms underlying this process remain largely unknown. Through Weighted Gene Co-expression Network Analysis (WGCNA) and TF-miRNA-mRNA integrative analysis we studied the transcriptome of neonate and infant thymic tissues grouped by age: 0-30 days (A); 31days-6 months (B); 7-12 months (C); 13-18 months (D); 19-31months (E). Age-related transcriptional modules, hubs and high gene significance (HGS) genes were identified, as well as TF-miRNA-hub/HGS co-expression correlations. Three transcriptional modules were correlated with A and/or E groups. Hubs were mostly related to cellular/metabolic processes; few were differentially expressed (DE) or related to T-cell development. Inversely, HGS genes in groups A and E were mostly DE. In A (neonate) one third of the hyper-expressed HGS genes were related to T-cell development, against one-twentieth in E, what may correlate with the early neonatal depletion and recovery of thymic T-cell populations. This genomic mechanism is tightly regulated by TF-miRNA-hub/HGS interactions that differentially govern cellular and molecular processes involved in the functioning of the neonate thymus and in the beginning of thymic decline.