Environments (Jun 2019)

Designer Biochars Impact on Corn Grain Yields, Biomass Production, and Fertility Properties of a Highly-Weathered Ultisol

  • Jeffrey M. Novak,
  • Gilbert C. Sigua,
  • Thomas F. Ducey,
  • Donald W. Watts,
  • Kenneth C. Stone

DOI
https://doi.org/10.3390/environments6060064
Journal volume & issue
Vol. 6, no. 6
p. 64

Abstract

Read online

There are mixed reports for biochars’ ability to increase corn grain and biomass yields. The objectives of this experiment were to conduct a three-year corn (Zea mays L.) grain and biomass production evaluation to determine soil fertility characteristics after designer biochars were applied to a highly weathered Ultisol. The amendments, which consisted of biochars and compost, were produced from 100% pine chips (PC); 100% poultry litter (PL); PC:PL 2:1 blend; PC mixed 2:1 with raw switchgrass (Panicum virgatum; rSG) compost; and 100% rSG compost. All treatments were applied at 30,000 kg/ha to a Goldsboro loam sandy (Fine-loamy, siliceous, sub-active, thermic Aquic Paleudult). Annual topsoil samples were collected in 5-cm depth increments (0 to 15-cm deep) and pH was measured along with Mehlich 1 phosphorus (M1 P) and potassium (M1 K) contents. After three years of corn production, there was no significant improvement in the annual mean corn grain or biomass yields. Biochar, which was applied from PL and PC:PL 2:1 blend, significantly increased M1 P and M1 K concentrations down to 10-cm deep, while the other biochar and compost treatments showed mixed results when the soil pH was modified. Our results demonstrated that designer biochar additions did not accompany higher corn grain and biomass productivity.

Keywords