International Journal of Librarianship (IJoL) (Jul 2020)

Managing Bias When Library Collections Become Data

  • Catherine Nicole Coleman

DOI
https://doi.org/10.23974/ijol.2020.vol5.1.162
Journal volume & issue
Vol. 5, no. 1

Abstract

Read online

Developments in AI research have dramatically changed what we can do with data and how we can learn from data. At the same time, implementations of AI amplify the prejudices in data often framed as ‘data bias’ and ‘algorithmic bias.’ Libraries, tasked with deciding what is worth keeping, are inherently discriminatory and yet remain trusted sources of information. As libraries begin to systematically approach their collections as data, will they be able to adopt and adapt the AI-driven tools to traditional practices? Drawing on the work of the AI initiative within Stanford Libraries, the Fantastic Futures conference on AI for libraries, archives, and museums, and recent scholarship on data bias and algorithmic bias, this article encourages libraries to engage critically with AI and help shape applications of the technology to reflect the ethos of libraries for the benefit of libraries themselves and the patrons they serve. A brief examination of two core concepts in machine learning, generalization and unstructured data, provides points of comparison to library practices in order to uncover the theoretical assumptions driving the different domains. The comparison also offers a point of entry for libraries to adopt machine learning methods on their own terms.