On a Class of Nonlinear Elliptic Equations with General Growth in the Gradient
M. Francesca Betta,
Anna Mercaldo,
Roberta Volpicelli
Affiliations
M. Francesca Betta
Dipartimento di Ingegneria, Università di Napoli Parthenope, Centro Direzionale, Isola C4, 80143 Napoli, Italy
Anna Mercaldo
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
Roberta Volpicelli
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
In this paper, we prove an existence and uniqueness result for a class of Dirichlet boundary value problems whose model is −Δpu=β|∇u|q+c|u|p−2u+fin Ω,u=0on ∂Ω, where Ω is an open bounded subset of RN, N≥2, 1pN, Δpu is the so-called p-Laplace operator, and p−1qp. We assume that β is a positive constant, c and f are measurable functions belonging to suitable Lorentz spaces. Our approach is based on Schauder fixed point theorem.