Symmetry (Jan 2020)

Learning Large Margin Multiple Granularity Features with an Improved Siamese Network for Person Re-Identification

  • Da-Xiang Li,
  • Guo-Yuan Fei,
  • Shyh-Wei Teng

DOI
https://doi.org/10.3390/sym12010092
Journal volume & issue
Vol. 12, no. 1
p. 92

Abstract

Read online

Person re-identification (Re-ID) is a non-overlapping multi-camera retrieval task to match different images of the same person, and it has become a hot research topic in many fields, such as surveillance security, criminal investigation, and video analysis. As one kind of important architecture for person re-identification, Siamese networks usually adopt standard softmax loss function, and they can only obtain the global features of person images, ignoring the local features and the large margin for classification. In this paper, we design a novel symmetric Siamese network model named Siamese Multiple Granularity Network (SMGN), which can jointly learn the large margin multiple granularity features and similarity metrics for person re-identification. Firstly, two branches for global and local feature extraction are designed in the backbone of the proposed SMGN model, and the extracted features are concatenated together as multiple granularity features of person images. Then, to enhance their discriminating ability, the multiple channel weighted fusion (MCWF) loss function is constructed for the SMGN model, which includes the verification loss and identification loss of the training image pair. Extensive comparative experiments on four benchmark datasets (CUHK01, CUHK03, Market-1501 and DukeMTMC-reID) show the effectiveness of our proposed method and its performance outperforms many state-of-the-art methods.

Keywords