Annals of Microbiology (Apr 2023)

Microbial cellulase production and its potential application for textile industries

  • Gamachis Korsa,
  • Rocktotpal Konwarh,
  • Chandran Masi,
  • Abate Ayele,
  • Setegn Haile

DOI
https://doi.org/10.1186/s13213-023-01715-w
Journal volume & issue
Vol. 73, no. 1
pp. 1 – 21

Abstract

Read online

Abstract Purpose The textile industry’s previous chemical use resulted in thousands of practical particulate emissions, such as machine component damage and drainage system blockage, both of which have practical implications. Enzyme-based textile processing is cost-effective, environmentally friendly, non-hazardous, and water-saving. The purpose of this review is to give evidence on the potential activity of microbial cellulase in the textile industry, which is mostly confined to the realm of research. Methods This review was progressive by considering peer-reviewed papers linked to microbial cellulase production, and its prospective application for textile industries was appraised and produced to develop this assessment. Articles were divided into two categories based on the results of trustworthy educational journals: methods used to produce the diversity of microorganisms through fermentation processes and such approaches used to produce the diversity of microbes through microbial fermentation. Submerged fermentation (SMF) and solid-state fermentation (SSF) techniques are currently being used to meet industrial demand for microbial cellulase production in the bio textile industry. Results Microbial cellulase is vital for increasing day to day due to its no side effect on the environment and human health becoming increasingly important. In conventional textile processing, the gray cloth was subjected to a series of chemical treatments that involved breaking the dye molecule’s amino group with Cl − , which started and accelerated dye(-resistant) bond cracking. A cellulase enzyme is primarily derived from a variety of microbial species found in various ecological settings as a biotextile/bio-based product technology for future needs in industrial applications. Conclusion Cellulase has been produced for its advantages in cellulose-based textiles, as well as for quality enhancement and fabric maintenance over traditional approaches. Cellulase’s role in the industry was microbial fermentation processes in textile processing which was chosen as an appropriate and environmentally sound solution for a long and healthy lifestyle.

Keywords