Applied Sciences (Sep 2023)

Enhancing Recommender Systems with Semantic User Profiling through Frequent Subgraph Mining on Knowledge Graphs

  • Haemin Jung,
  • Heesung Park,
  • Kwangyon Lee

DOI
https://doi.org/10.3390/app131810041
Journal volume & issue
Vol. 13, no. 18
p. 10041

Abstract

Read online

Recommender systems play a crucial role in personalizing online user experiences by creating user profiles based on user–item interactions and preferences. Knowledge graphs (KGs) are intricate data structures that encapsulate semantic information, expressing users and items in a meaningful way. Although recent deep learning-based recommendation algorithms that embed KGs have demonstrated impressive performance, the richness of semantics and explainability embedded in the KGs are often lost due to the opaque nature of vector representations in deep neural networks. To address this issue, we propose a novel user profiling method for recommender systems that can encapsulate user preferences while preserving the original semantics of the KGs, using frequent subgraph mining. Our approach involves creating user profile vectors from a set of frequent subgraphs that contain information about user preferences and the strength of those preferences, measured by frequency. Subsequently, we trained a deep neural network model to learn the relationship between users and items, thereby facilitating effective recommendations using the neural network’s approximation ability. We evaluated our user profiling methodology on movie data and found that it demonstrated competitive performance, indicating that our approach can accurately represent user preferences while maintaining the semantics of the KGs. This work, therefore, presents a significant step towards creating more transparent and effective recommender systems that can be beneficial for a wide range of applications and readers interested in this field.

Keywords