PLoS ONE (Jan 2022)

The epidemiology of diphtheria in Haiti, December 2014–June 2021: A spatial modeling analysis

  • Juniorcaius Ikejezie,
  • Tessa Langley,
  • Sarah Lewis,
  • Donal Bisanzio,
  • Revati Phalkey

Journal volume & issue
Vol. 17, no. 8

Abstract

Read online

Background Haiti has been experiencing a resurgence of diphtheria since December 2014. Little is known about the factors contributing to the spread and persistence of the disease in the country. Geographic information systems (GIS) and spatial analysis were used to characterize the epidemiology of diphtheria in Haiti between December 2014 and June 2021. Methods Data for the study were collected from official and open-source databases. Choropleth maps were developed to understand spatial trends of diphtheria incidence in Haiti at the commune level, the third administrative division of the country. Spatial autocorrelation was assessed using the global Moran’s I. Local indicators of spatial association (LISA) were employed to detect areas with spatial dependence. Ordinary least squares (OLS) and geographically weighted regression (GWR) models were built to identify factors associated with diphtheria incidence. The performance and fit of the models were compared using the adjusted r-squared (R2) and the corrected Akaike information criterion (AICc). Results From December 2014 to June 2021, the average annual incidence of confirmed diphtheria was 0.39 cases per 100,000 (range of annual incidence = 0.04–0.74 per 100,000). During the study period, diphtheria incidence presented weak but significant spatial autocorrelation (I = 0.18, pConclusion This study demonstrates that GIS and spatial analysis can support the investigation of epidemiological patterns. Furthermore, it shows that diphtheria incidence exhibited spatial variability in Haiti. The disease hotspots and potential risk factors identified in this analysis could provide a basis for future public health interventions aimed at preventing and controlling diphtheria transmission.