IEEE Access (Jan 2019)

A Survey of Deep Learning-Based Object Detection

  • Licheng Jiao,
  • Fan Zhang,
  • Fang Liu,
  • Shuyuan Yang,
  • Lingling Li,
  • Zhixi Feng,
  • Rong Qu

DOI
https://doi.org/10.1109/ACCESS.2019.2939201
Journal volume & issue
Vol. 7
pp. 128837 – 128868

Abstract

Read online

Object detection is one of the most important and challenging branches of computer vision, which has been widely applied in people’s life, such as monitoring security, autonomous driving and so on, with the purpose of locating instances of semantic objects of a certain class. With the rapid development of deep learning algorithms for detection tasks, the performance of object detectors has been greatly improved. In order to understand the main development status of object detection pipeline thoroughly and deeply, in this survey, we analyze the methods of existing typical detection models and describe the benchmark datasets at first. Afterwards and primarily, we provide a comprehensive overview of a variety of object detection methods in a systematic manner, covering the one-stage and two-stage detectors. Moreover, we list the traditional and new applications. Some representative branches of object detection are analyzed as well. Finally, we discuss the architecture of exploiting these object detection methods to build an effective and efficient system and point out a set of development trends to better follow the state-of-the-art algorithms and further research.

Keywords