Energies (Oct 2020)
Adaptive Control of Fuel Cell and Supercapacitor Based Hybrid Electric Vehicles
Abstract
In this paper, an adaptive nonlinear control strategy for the energy management of a polymer electrolyte membrane fuel cell and supercapacitor-based hybrid electric vehicle is proposed. The purpose of this work was to satisfy: (i) tight DC bus voltage regulation, (ii) good fuel cell reference current tracking, (iii) better supercapacitor reference current tracking (iv) global asymptotic stability of the closed-loop control system, and (v) better vehicle performance by catering to slowly-varying parameters. We have selected the power stage schematic of a hybrid electric vehicle and utilized adaptive backstepping and adaptive Lyapunov redesign-based nonlinear control methods to formally derive adaptive parametric update laws for all slowly-varying parameters. The performance of the proposed system has been tested under varying load conditions using experimental data from the “Extra Urban Driving Cycle.” Mathematical analysis and Matlab/Simulink results show that proposed controllers are globally asymptotically stable and satisfy all the design requirements. The physical effectiveness of proposed system has been verified by comparing simulation results with the real-time controller hardware in the loop experimental results. Results show that proposed system shows satisfactory performance and caters for the time-varying parametric variations and the load requirements.
Keywords