Molecules (Feb 2022)

Analysis of the Factors Affecting Static In Vitro Pepsinolysis of Food Proteins

  • Natsumi Maeda,
  • Dorota Dulko,
  • Adam Macierzanka,
  • Christian Jungnickel

DOI
https://doi.org/10.3390/molecules27041260
Journal volume & issue
Vol. 27, no. 4
p. 1260

Abstract

Read online

In this meta-analysis, we collected 58 publications spanning the last seven decades that reported static in vitro protein gastric digestion results. A number of descriptors of the pepsinolysis process were extracted, including protein type; pepsin activity and concentration; protein concentration; pH; additives; protein form (e.g., ‘native’, ‘emulsion’, ‘gel’, etc.); molecular weight of the protein; treatment; temperature; and half-times (HT) of protein digestion. After careful analysis and the application of statistical techniques and regression models, several general conclusions could be extracted from the data. The protein form to digest the fastest was ‘emulsion’. The rate of pepsinolysis in the emulsion was largely independent of the protein type, whereas the gastric digestion of the native protein in the solution was strongly dependent on the protein type. The pepsinolysis was shown to be strongly dependent on the structural components of the proteins digested—specifically, β-sheet-inhibited and amino acid, leucine, methionine, and proline-promoted digestion. Interestingly, we found that additives included in the digestion mix to alter protein hydrolysis had, in general, a negligible effect in comparison to the clear importance of the protein form or additional treatment. Overall, the findings allowed for the targeted creation of foods for fast or slow protein digestion, depending on the nutritional needs.

Keywords