Separations (May 2024)

Optimizing Operational Parameters for Lithium Hydroxide Production via Bipolar Membrane Electrodialysis

  • Guoxiang Wei,
  • Mengmeng Wang,
  • Chenxiao Lin,
  • Chuan Xu,
  • Jie Gao

DOI
https://doi.org/10.3390/separations11050146
Journal volume & issue
Vol. 11, no. 5
p. 146

Abstract

Read online

Traditional lithium hydroxide production techniques, like lithium sulfate and lithium carbonate causticizing methods, suffer from drawbacks including high specific energy consumption, time-consuming processes, and low recovery rates. The conversion of lithium chloride to lithium hydroxide using bipolar membrane electrodialysis is straightforward; however, the influence of operational parameters on bipolar membrane electrodialysis performance have not been investigated. Herein, the impact of the current density (20 mA/cm2~80 mA/cm2), feed concentration (0.5 M~2.5 M), initial feed pH (2.5, 3.5 and 4.5), and the volume ratio of the feed and base solution (1:1, 2:1 and 3:1) on the current efficiency and specific energy consumption in the bipolar membrane electrodialysis was systematically investigated. The bipolar membrane electrodialysis process showed promising results under optimal conditions with a current density of 50 mA/cm2 and an initial lithium chloride concentration of 1.5 M. This process achieved a current efficiency of 75.86% with a specific energy consumption of 3.65 kwh/kg lithium hydroxide while also demonstrating a lithium hydroxide recovery rate exceeding 90% with a purity of about 95%. This work will provide valuable guidance for hands on implementation of bipolar membrane electrodialysis technology in the production of LiOH.

Keywords