Applied Sciences (Sep 2024)
Evaluation of Occupational Exoskeletons: A Comprehensive Protocol for Experimental Design and Analysis
Abstract
This paper proposes a modular protocol for the designing of experimental studies to analyze exoskeletons used in industrial settings to support manual material handling (MMH). Despite exoskeleton technologies starting to be highly commercialized and present in workplaces, research still lacks a standardized procedure for analyzing the impact of these devices on workers. The protocol presented in this paper outlines a step-by-step procedure, including the parameters to be collected and analyzed in a research study. Moreover, the approach could be easily adapted to meet the specificity of a wide range of exoskeletons. The main novelty of the protocol is thus to support the experimental design and analysis of studies assessing the overall impact of exoskeletons on workers. To implement the protocol, the selected case study concerned a palletizing task involving the MMH of 12 cardboard boxes, weighing 10 kg. The results from physiological signals and pressure insoles show that the protocol is comprehensive and can be utilized by researchers evaluating different occupational exoskeletons for assistance during MMH (both active and passive), with modifications to specific parts based on the type of exoskeleton being assessed or the variables of interest.
Keywords