Research (Jan 2020)

Construction of 1D/2D α-Fe2O3/SnO2 Hybrid Nanoarrays for Sub-ppm Acetone Detection

  • Huimin Gong,
  • Changhui Zhao,
  • Gaoqiang Niu,
  • Wei Zhang,
  • Fei Wang

DOI
https://doi.org/10.34133/2020/2196063
Journal volume & issue
Vol. 2020

Abstract

Read online

Exhaled acetone is one of the representative biomarkers for the noninvasive diagnosis of type-1 diabetes. In this work, we have applied a facile two-step chemical bath deposition method for acetone sensors based on α-Fe2O3/SnO2 hybrid nanoarrays (HNAs), where one-dimensional (1D) FeOOH nanorods are in situ grown on the prefabricated 2D SnO2 nanosheets for on-chip construction of 1D/2D HNAs. After annealing in air, ultrafine α-Fe2O3 nanorods are homogenously distributed on the surface of SnO2 nanosheet arrays (NSAs). Gas sensing results show that the α-Fe2O3/SnO2 HNAs exhibit a greatly enhanced response to acetone (3.25 at 0.4 ppm) at a sub-ppm level compared with those based on pure SnO2 NSAs (1.16 at 0.4 ppm) and pure α-Fe2O3 nanorods (1.03 at 0.4 ppm), at an operating temperature of 340°C. The enhanced acetone sensing performance may be attributed to the formation of α-Fe2O3–SnO2 n-n heterostructure with 1D/2D hybrid architectures. Moreover, the α-Fe2O3/SnO2 HNAs also possess good reproducibility and selectivity toward acetone vapor, suggesting its potential application in breath acetone analysis.