Scientific Reports (Dec 2022)
Diethylcarbamazine, TRP channels and Ca2+ signaling in cells of the Ascaris intestine
Abstract
Abstract The nematode parasite intestine absorbs nutrients, is involved in innate immunity, can metabolize xenobiotics and as we show here, is also a site of action of the anthelmintic, diethylcarbamazine. Diethylcarbamazine (DEC) is used to treat lymphatic filariasis and activates TRP-2, GON-2 & CED-11 TRP channels in Brugia malayi muscle cells producing spastic paralysis. DEC also has stimulatory effects on ascarid nematode parasites. Using PCR techniques, we detected, in Ascaris suum intestine, message for: Asu-trp-2, Asu-gon-2, Asu-ced-11, Asu-ocr-1, Asu-osm-9 and Asu-trpa-1. Comparison of amino-acid sequences of the TRP channels of B. malayi, and A. suum revealed noteworthy similarity, suggesting that the intestine of Ascaris will also be sensitive to DEC. We used Fluo-3AM as a Ca2+ indicator and observed characteristic unsteady time-dependent increases in the Ca2+ signal in the intestine in response to DEC. Application of La3+ and the TRP channel inhibitors, 2-APB or SKF 96365, inhibited DEC mediated increases in intracellular Ca2+. These observations are important because they emphasize that the nematode intestine, in addition to muscle, is a site of action of DEC as well as other anthelmintics. DEC may also enhance the Ca2+ toxicity effects of other anthelmintics acting on the intestine or, increase the effects of other anthelmintics that are metabolized and excreted by the nematode intestine.