Journal of Marine Science and Engineering (Jul 2023)
Development of a Numerical Ice Tank Based on DEM and Physical Model Testing: Methods, Validations and Applications
Abstract
The determination of ice loads on polar vessels and offshore structures is important for ice-resistant design, safe operation, and management of structural integrity in ice-infested waters. Physical model testing carried out in an ice tank/basin is usually an important technical approach for evaluating the ice loads. However, the high cost and time consumption make it difficult to perform multiple repetitions or numerous trials. Recently, the rapid development of high-performance computation techniques provides a usable alternative where the numerical methods represented by the discrete element method (DEM) have made remarkable contributions to the ice load predictions. Based on DEM simulations validated by physical model tests, numerical ice tanks can be developed as an effective complement to their counterparts. In this paper, a numerical ice tank based on 3D spherical DEM was established with respect to the small ice model basin of China Ship Scientific Research Center (CSSRC-SIMB). Based on spherical DEM with parallel bond model, the model tests of typical structures (vertical cylinder and inclined plate) in level ice sheets were established in the numerical ice tank, and the ice–structure interaction process under the same initial conditions was simulated. The accuracy of the simulations is verified by comparing the simulated ice loads with the measured ice loads from the model tests in the CSSRC-SIMB. Furthermore, the application of the numerical ice tank was extended to simulate the navigation of a Wass bow in level ice and broken ice conditions. The value of the break resistance of the Wass bow in level ice was evaluated, and the numerical ice tank produced results that were found to be consistent with those obtained from Lindqvist’s formula. The statistical properties of the bow load for different broken ice fields with the same initial physical conditions are analyzed by performing a repeatability test on the broken ice fields.
Keywords