Deciphering the Glycosylation Steps in the Biosynthesis of P-1894B and Grincamycin Isolated from Marine-Derived <i>Streptomyces lusitanus</i> SCSIO LR32
Hongbo Huang,
Yun Zhang,
Yongxiang Song,
Chunyao Ling,
Siyan Peng,
Bo Ding,
Yiwen Tao,
Jianhua Ju
Affiliations
Hongbo Huang
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
Yun Zhang
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Yongxiang Song
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Chunyao Ling
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Siyan Peng
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
Bo Ding
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
Yiwen Tao
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
Jianhua Ju
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Recently, we re-isolated the glycosylated angucycline antibiotics P-1894B (1) and grincamycin (1′) from the marine-derived Streptomyces lusitanus SCSIO LR32 as potent antitumor agents and identified their biosynthesis gene cluster gcn. Both P-1894B (1) and grincamycin (1′) possess a trisaccharide and a disaccharide moiety comprised of five deoxysugars. In this work, three genes encoding glycosyltransferases (GcnG1, GcnG2, and GcnG3) responsible for the assembly of deoxysugars into angucycline aglycone were identified from the biosynthesis gene cluster gcn. Gene inactivations of gcnG1, gcnG2, gcnG3, and gcnG1G2 by lambda-RED-mediated gene replacements led to the construction of four mutants, in which the glycosyltransferase genes were disrupted, respectively. The metabolites from the mutants were purified and identified, including two new analogues designated as grincamycin U (3a) and V (3′). The sequential glycosylation steps in the biosynthesis of P-1894B (1) and grincamycin (1′) catalyzed by GcnG3, GcnG1, and GcnG2 were elucidated.