Translational Neuroscience (Apr 2019)

Computational neuroscience applied in surface roughness fiber optic sensor

  • He Wei

DOI
https://doi.org/10.1515/tnsci-2019-0012
Journal volume & issue
Vol. 10, no. 1
pp. 70 – 75

Abstract

Read online

Computational neuroscience has been widely used in fiber optic sensor signal output. This paper introduces a method for processing the Surface Roughness Fiber Optic Sensor output signals with a radial basis function neural network. The output signal of the sensor and the laser intensity signal as the light source are added to the input of the RBF neural network at the same time, and with the ability of the RBF neural network to approach the non-linear function with arbitrary precision, to achieve the nonlinear compensation of the sensor and reduction of the effect of changes in laser output light intensity at the same time. The Surface Roughness Fiber Optic Sensor adopting this method has low requirements on the stability of the output power of laser, featuring large measuring range, high accuracy, good repeatability, measuring of special surfaces such as minor area, and the bottom surface of holed etc. The measurements were given and various factors that affect the measurement were analyzed and discussed.

Keywords