Heliyon (Jul 2024)
Upregulation of LncRNA UCA1 promotes cardiomyocyte proliferation by inhibiting the miR-128/SUZ12/P27 pathway
Abstract
Enhancing cardiomyocyte proliferation is essential to reverse or slow down the heart failure progression in many cardiovascular diseases such as myocardial infarction (MI). Long non-coding RNAs (lncRNAs) have been reported to regulate cardiomyocyte proliferation. In particular, lncRNA urothelial carcinoma-associated 1 (lncUCA1) played multiple roles in regulating cell cycle progression and cardiovascular diseases, making lncUCA1 a potential target for promoting cardiomyocyte proliferation. However, the role of lncUCA1 in cardiomyocyte proliferation remains unknown. This study aimed at exploring the function and underlying molecular mechanism of lncUCA1 in cardiomyocyte proliferation. Quantitative RT-PCR showed that lncUCA1 expression decreased in postnatal hearts. Gain-and-loss-of-function experiments showed that lncUCA1 positively regulated cardiomyocyte proliferation in vitro and in vivo. The bioinformatics program identified miR-128 as a potential target of lncUCA1, and loss of miR-128 was reported to promote cardiomyocyte proliferation by inhibiting the SUZ12/P27 pathway. Luciferase reporter assay, qRT-PCR, western blotting, and immunostaining experiments further revealed that lncUCA1 acted as a ceRNA of miR-128 to upregulate its target SUZ12 and downregulate P27, thereby increasing cyclin B1, cyclin E, CDK1 and CDK2 expression to promote cardiomyocyte proliferation. In conclusion, upregulation of lncRNA UCA1 promoted cardiomyocyte proliferation by inhibiting the miR-128/SUZ12/P27 pathway. Our results indicated that lncUCA1 might be a new therapeutic target for stimulating cardiomyocyte proliferation.