European Physical Journal C: Particles and Fields (Jul 2021)

Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment

  • M. Aker,
  • A. Beglarian,
  • J. Behrens,
  • A. Berlev,
  • U. Besserer,
  • B. Bieringer,
  • F. Block,
  • B. Bornschein,
  • L. Bornschein,
  • M. Böttcher,
  • T. Brunst,
  • T. S. Caldwell,
  • R. M. D. Carney,
  • S. Chilingaryan,
  • W. Choi,
  • K. Debowski,
  • M. Deffert,
  • M. Descher,
  • D. Díaz Barrero,
  • P. J. Doe,
  • O. Dragoun,
  • G. Drexlin,
  • F. Edzards,
  • K. Eitel,
  • E. Ellinger,
  • A. El Miniawy,
  • R. Engel,
  • S. Enomoto,
  • A. Felden,
  • J. A. Formaggio,
  • F. M. Fränkle,
  • G. B. Franklin,
  • F. Friedel,
  • A. Fulst,
  • K. Gauda,
  • W. Gil,
  • F. Glück,
  • S. Groh,
  • R. Grössle,
  • R. Gumbsheimer,
  • V. Hannen,
  • N. Haußmann,
  • F. Heizmann,
  • K. Helbing,
  • S. Hickford,
  • R. Hiller,
  • D. Hillesheimer,
  • D. Hinz,
  • T. Höhn,
  • T. Houdy,
  • A. Huber,
  • A. Jansen,
  • C. Karl,
  • J. Kellerer,
  • M. Kleesiek,
  • M. Klein,
  • C. Köhler,
  • L. Köllenberger,
  • A. Kopmann,
  • M. Korzeczek,
  • A. Kovalík,
  • B. Krasch,
  • H. Krause,
  • N. Kunka,
  • T. Lasserre,
  • L. La Cascio,
  • O. Lebeda,
  • B. Lehnert,
  • T. L. Le,
  • A. Lokhov,
  • M. Machatschek,
  • E. Malcherek,
  • M. Mark,
  • A. Marsteller,
  • E. L. Martin,
  • M. Meier,
  • C. Melzer,
  • A. Menshikov,
  • S. Mertens,
  • J. Mostafa,
  • K. Müller,
  • S. Niemes,
  • P. Oelpmann,
  • D. S. Parno,
  • A. W. P. Poon,
  • J. M. L. Poyato,
  • F. Priester,
  • P. C.-O. Ranitzsch,
  • R. G. H. Robertson,
  • W. Rodejohann,
  • C. Rodenbeck,
  • M. Röllig,
  • C. Röttele,
  • M. Ryšavý,
  • R. Sack,
  • A. Saenz,
  • P. Schäfer,
  • A. Schaller (née Pollithy),
  • L. Schimpf,
  • K. Schlösser,
  • M. Schlösser,
  • L. Schlüter,
  • S. Schneidewind,
  • M. Schrank,
  • B. Schulz,
  • C. Schwachtgen,
  • M. Šefčík,
  • H. Seitz-Moskaliuk,
  • V. Sibille,
  • D. Siegmann,
  • M. Slezák,
  • M. Steidl,
  • M. Sturm,
  • M. Sun,
  • D. Tcherniakhovski,
  • H. H. Telle,
  • L. A. Thorne,
  • T. Thümmler,
  • N. Titov,
  • I. Tkachev,
  • N. Trost,
  • K. Urban,
  • K. Valerius,
  • D. Vénos,
  • A. P. Vizcaya Hernández,
  • C. Weinheimer,
  • S. Welte,
  • J. Wendel,
  • J. F. Wilkerson,
  • J. Wolf,
  • S. Wüstling,
  • W. Xu,
  • Y.-R. Yen,
  • S. Zadoroghny,
  • G. Zeller

DOI
https://doi.org/10.1140/epjc/s10052-021-09325-z
Journal volume & issue
Vol. 81, no. 7
pp. 1 – 16

Abstract

Read online

Abstract The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium $$\upbeta $$ β -decay endpoint region with a sensitivity on $$m_\nu $$ m ν of 0.2 $$\hbox {eV}/\hbox {c}^2$$ eV / c 2 (90% CL). For this purpose, the $$\upbeta $$ β -electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6 keV. A dominant systematic effect of the response of the experimental setup is the energy loss of $$\upbeta $$ β -electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% $$\hbox {T}_2$$ T 2 gas mixture at 30 K, as used in the first KATRIN neutrino-mass analyses, as well as a $$\hbox {D}_2$$ D 2 gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of $$\sigma (m_\nu ^2)< {{10}^{-2}}{\hbox {eV}^{2}}$$ σ ( m ν 2 ) < 10 - 2 eV 2 [1] in the KATRIN neutrino-mass measurement to a subdominant level.