Catalysts (Oct 2021)

The Electrochemical Behaviour of Quaternary Amine-Based Room-Temperature Ionic Liquid N4111(TFSI)

  • Jaanus Kruusma,
  • Arvo Tõnisoo,
  • Rainer Pärna,
  • Thomas Thomberg,
  • Mati Kook,
  • Tavo Romann,
  • Vambola Kisand,
  • Enn Lust

DOI
https://doi.org/10.3390/catal11111315
Journal volume & issue
Vol. 11, no. 11
p. 1315

Abstract

Read online

In this study, we used the in situ X-ray photoelectron spectroscopy (XPS), in situ mass spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy methods, for the first time, in a detailed exploration of the electrochemical behaviour of a quaternary amine cation-based room-temperature ionic liquid, butyl-trimethyl-ammonium bis(trifluoromethylsulfonyl)imide (N4111(TFSI)), at the negatively and positively polarised molybdenum carbide-derived micro-mesoporous carbon (mmp-C(Mo2C)) electrodes that can be used as high surface area supporting material for electrocatalysts. The shapes of the C 1s, N 1s, O 1s, F 1s and S 2p XPS spectra were stable for N4111(TFSI) within a very wide potential range. The XPS data indicated the non-specific adsorption character of the cations and anions in the potential range from −2.00 V to 0.00 V. Thus, this region can be used for the detailed analysis of catalytic reaction mechanisms. We observed strong adsorption from 0.00 V to 1.80 V, and at E > 1.80 V, very strong adsorption of the N4111(TFSI) at the mmp-C(Mo2C) took place. At more negative potentials than −2.00 V, the formation of a surface layer containing both N4111+ cations and TFSI− anions was established with the formation of various gaseous compounds. Collected data indicated the electrochemical instability of the N4111+ cation at E < −2.00 V.

Keywords