Scientific Reports (May 2022)
Renal protection induced by physical exercise may be mediated by the irisin/AMPK axis in diabetic nephropathy
Abstract
Abstract In patients with diabetes, it has been suggested that physical exercise may reduce albuminuria and the progression of renal disease. However, the molecular mechanism by which physical exercise protects the kidney in diabetes remains poorly understood. The aim of the present study was to determine the contribution of muscle irisin secretion induced by aerobic physical exercise with the subsequent activation of AMPK for kidney protection under diabetic conditions. Aerobic physical exercise in rats protected the kidney in streptozotocin-induced diabetes. It reduced albuminuria, glomerular hypertrophy, and glomerular expression of collagen IV and fibronectin, as well as markers of kidney inflammation, when compared to sedentary diabetic rats. These effects were associated with elevation in muscle FNDC5/irisin and activity of AMPK in the diabetic kidney. However, the beneficial effects of exercise were lost when the diabetic rats were treated with CycloRGDyK, that in the bone it has been described as an irisin receptor blocker. In cultured human tubular (HK-2) cells, treatment with recombinant irisin counteracted the effect of high glucose in a dose-dependent manner. Irisin, per se, also activated AMPK in HK-2 cells. It is concluded that in diabetes, the renal protective effect of exercise may be mediated by the irisin/AMPK pathway.