Applied Sciences (Dec 2024)
Study of the Effects of Different Dielectric Environments on the Characteristics of Electro-Explosive Discharge of Metal Wires and Shock Waves
Abstract
The electrical explosive fragmentation technique has attracted widespread attention due to its environmental friendliness and high efficiency. However, the mechanism by which dielectrics influence rock fragmentation remains unclear. This study innovatively selected seven types of environmentally friendly dielectrics to systematically investigate their roles in the metallic wire electrical explosive rock fragmentation process. By precisely characterizing the crack morphology of concrete blocks, shock wave–strain responses, and discharge signal characteristics, the diverse mechanisms by which different dielectrics modulate rock fragmentation were revealed. The results indicate that oxide dielectrics release energy continuously through thermochemical reactions, highly conductive solutions accelerate energy deposition, and reductant suspensions generate strong secondary shock waves—all significantly outperforming tap water in terms of rock fragmentation performance. Notably, the energy deposition efficiency shows a nonlinear relationship with fragmentation effectiveness, influenced by factors such as energy release modes, dielectric composition, and bubble dynamics. The energy conversion mechanism of the electrical explosive rock fragmentation process studied in this paper provides a theoretical foundation for the fine-tuning, customization, and greening of electrical explosive rock fragmentation strategies in engineering practice.
Keywords