Journal of Lipid Research (Jul 1998)
New lysosomal acid lipase gene mutants explain the phenotype ofWolman disease and cholesteryl ester storage disease
Abstract
Deficiency of lysosomal acid lipase (LAL) leads to either Wolman disease(WD) or the more benign cholesteryl ester storage disease (CESD). To identifythe molecular basis of the different phenotypes we have characterised the LALgene mutations in three new patients with LAL deficiency. A patient with WD washomozygote for a null allele Y303X. The other two patients, with CESD, presentedeither homozygosity for T267I or compound heterozygosity consisting of Q64R andan exon 8 donor splice site substitution (G→A in position–1). The mutants T267I and Q64R and the previously reported L273S, G66V,and H274Y CESD substitutions, overexpressed in stable clones, were found to befully glycosylated and show an enzymatic activity of 3–8% of that ofnormal LAL. On the other hand, the Δ254–277 mutant proteinderived from exon 8 skipping and the Y303X protein were totally inactive. Bytransient transfection of hybrid minigene constructs, the CESD G→A(–1) substitution resulted in partial exon inclusion, thus allowing theproduction of a small amount of normal LAL mRNA and hence of a functionalenzyme. In contrast, a G→Asubstitution observed in WD at position +1 of the same exon 8 donor siteresulted in complete exon skipping and the sole production of an inactiveΔ254–277 protein.In conclusion,LAL genotypes determine the level of residual enzymatic activity, thusexplaining the severity of the phenotype.—Pagani, F., R. Pariyarath, R.Garcia, C. Stuani, A. B. Burlina, G. Ruotolo, M. Rabusin, and F. E. Baralle. Newlysosomal acid lipase gene mutants explain the phenotype of Wolman disease andcholesteryl ester storage disease. J. Lipid Res. 1998. 39:1382–1388.