Open Physics (Nov 2017)

An unsteady MHD Maxwell nanofluid flow with convective boundary conditions using spectral local linearization method

  • Sithole Hloniphile M.,
  • Mondal Sabyasachi,
  • Sibanda Precious,
  • Motsa Sandile S.

DOI
https://doi.org/10.1515/phys-2017-0074
Journal volume & issue
Vol. 15, no. 1
pp. 637 – 646

Abstract

Read online

The main focus of this study is on unsteady Maxwell nanofluid flow over a shrinking surface with convective and slip boundary conditions. The objective is to give an evaluation of the impact and significance of Brownian motion and thermophoresis when the nanofluid particle volume fraction flux at the boundary is zero. The transformed equations are solved numerically using the spectral local linearization method. We present an analysis of the residual errors to show the accuracy and convergence of the spectral local linearization method. We explore the effect of magnetic field and thermophoresis parameters on the heat transfer rate. We show, among other results, that an increase in particle Brownian motion leads to a decrease in the concentration profiles but concentration profiles increase with the increasing value of thermophoresis parameter

Keywords