Heliyon (Jun 2024)
Role of plasmacytoid dendritic cells in vascular dysfunction in mice with renovascular hypertension
Abstract
Endothelial dysfunction and inflammation are clinically significant risk factors for cardiovascular diseases in hypertension. Although immune cells play a role in hypertension, the impact of plasmacytoid dendritic cells in established renovascular hypertension-induced cardiovascular complications is not fully understood. We investigated plasmacytoid dendritic cells' contribution to arterial endothelial dysfunction and inflammation in renovascular hypertension.A two-kidney one-clip (2K1C) model for four weeks in both male and female mice was used to induce renovascular hypertension. We treated mice with or without anti-PDCA-1 antibodies for one week to deplete the plasmacytoid dendritic cells. Renovascular hypertension causes cardiac hypertrophy, lung edema, and microvascular endothelial dysfunction associated with inflammation induction in mice. Moreover, renovascular hypertension affects the profile of immune cells, including dendritic cells and macrophages, with variations between male and female mice. Interestingly, the depletion of plasmacytoid dendritic cells significantly reduces blood pressure, cardiac hypertrophy, lung edema, inflammation, and oxidative stress and improves microvascular endothelial function via the endoplasmic reticulum (ER) stress, autophagy, and mTOR-dependent mechanisms.Plasmacytoid dendritic cells significantly contribute to the development of cardiovascular complications in renovascular hypertension by modulating immune cells, inflammation, oxidative stress, and ER stress.