PLoS ONE (Jan 2014)
L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF-κB translocation in cortical neurons/glia Cocultures.
Abstract
In response to acute insults to the central nervous system, such as pathogen invasion or neuronal injuries, glial cells become activated and secrete inflammatory mediators such as nitric oxide (NO), cytokines, and chemokines. This neuroinflammation plays a crucial role in the pathophysiology of chronic neurodegenerative diseases. Endogenous ascorbate levels are significantly decreased among patients with septic encephalopathy. Using the bacterial endotoxin lipopolysaccharide (LPS) to induce neuroinflammation in primary neuron/glia cocultures, we investigated how L-ascorbate (vitamin C; Vit. C) affected neuroinflammation. LPS (100 ng/ml) induced the expression of inducible NO synthase (iNOS) and the production of NO, interleukin (IL)-6, and macrophage inflammatory protein-2 (MIP-2/CXCL2) in a time-dependent manner; however, cotreatment with Vit. C (5 or 10 mM) attenuated the LPS-induced iNOS expression and production of NO, IL-6, and MIP-2 production. The morphological features revealed after immunocytochemical staining confirmed that Vit. C suppressed LPS-induced astrocytic and microglial activation. Because Vit. C can be transported into neurons and glia via the sodium-dependent Vit. C transporter-2, we examined how Vit. C affected LPS-activated intracellular signaling in neuron/glia cocultures. The results indicated the increased activation (caused by phosphorylation) of mitogen-activated protein kinases (MAPKs), such as p38 at 30 min and extracellular signal-regulated kinases (ERKs) at 180 min after LPS treatment. The inhibition of p38 and ERK MAPK suppressed the LPS-induced production of inflammatory mediators. Vit. C also inhibited the LPS-induced activation of p38 and ERK. Combined treatments of Vit. C and the inhibitors of p38 and ERK yielded no additional inhibition compared with using the inhibitors alone, suggesting that Vit. C functions through the same signaling pathway (i.e., MAPK) as these inhibitors. Vit. C also reduced LPS-induced IκB-α degradation and NF-κB translocation. Thus, Vit. C suppressed the LPS-stimulated production of inflammatory mediators in neuron/glia cocultures by inhibiting the MAPK and NF-κB signaling pathways.