Toxins (Oct 2017)

The Effects of Melittin and Apamin on Airborne Fungi-Induced Chemical Mediator and Extracellular Matrix Production from Nasal Polyp Fibroblasts

  • Seung-Heon Shin,
  • Mi-Kyung Ye,
  • Sung-Yong Choi,
  • Kwan-Kyu Park

DOI
https://doi.org/10.3390/toxins9110348
Journal volume & issue
Vol. 9, no. 11
p. 348

Abstract

Read online

Melittin and apamin are the main components of bee venom and they have been known to have anti-inflammatory and anti-fibrotic properties. The aim of this study was to evaluate the effect of melittin and apamin on airborne fungi-induced chemical mediator and extracellular matrix (ECM) production in nasal fibroblasts. Primary nasal fibroblasts were isolated from nasal polyps, which were collected during endoscopic sinus surgery. Nasal fibroblasts were treated with Alternaria and Aspergillus. The effects of melittin and apamin on the production of interleukin (IL)-6 and IL-8 were determined with enzyme linked immunosorbent assay. ECM mRNA and protein expressions were determined with the use of quantitative RT-PCR and Western blot. Alternaria-induced IL-6 and IL-8 production was significantly inhibited by apamin. However, melittin did not influence the production of IL-6 and IL-8 from nasal fibroblasts. Melittin or apamin significantly inhibited collagen type I, TIMP-1, and MMP-9 mRNA expression and protein production from nasal fibroblasts. Melittin and apamin inhibited Alternaria-induced phosphorylation of Smad 2/3 and p38 MAPK. Melittin and apamin can inhibit the fungi-induced production of chemical mediators and ECM from nasal fibroblasts. These results suggest the possible role of melittin and apamin in the treatment of fungi induced airway inflammatory diseases.

Keywords