Nature Communications (Apr 2021)

Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions

  • Kuang-Yu Chang,
  • William J. Riley,
  • Sara H. Knox,
  • Robert B. Jackson,
  • Gavin McNicol,
  • Benjamin Poulter,
  • Mika Aurela,
  • Dennis Baldocchi,
  • Sheel Bansal,
  • Gil Bohrer,
  • David I. Campbell,
  • Alessandro Cescatti,
  • Housen Chu,
  • Kyle B. Delwiche,
  • Ankur R. Desai,
  • Eugenie Euskirchen,
  • Thomas Friborg,
  • Mathias Goeckede,
  • Manuel Helbig,
  • Kyle S. Hemes,
  • Takashi Hirano,
  • Hiroki Iwata,
  • Minseok Kang,
  • Trevor Keenan,
  • Ken W. Krauss,
  • Annalea Lohila,
  • Ivan Mammarella,
  • Bhaskar Mitra,
  • Akira Miyata,
  • Mats B. Nilsson,
  • Asko Noormets,
  • Walter C. Oechel,
  • Dario Papale,
  • Matthias Peichl,
  • Michele L. Reba,
  • Janne Rinne,
  • Benjamin R. K. Runkle,
  • Youngryel Ryu,
  • Torsten Sachs,
  • Karina V. R. Schäfer,
  • Hans Peter Schmid,
  • Narasinha Shurpali,
  • Oliver Sonnentag,
  • Angela C. I. Tang,
  • Margaret S. Torn,
  • Carlo Trotta,
  • Eeva-Stiina Tuittila,
  • Masahito Ueyama,
  • Rodrigo Vargas,
  • Timo Vesala,
  • Lisamarie Windham-Myers,
  • Zhen Zhang,
  • Donatella Zona

DOI
https://doi.org/10.1038/s41467-021-22452-1
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 10

Abstract

Read online

Wetland methane emissions contribute to global warming, and are oversimplified in climate models. Here the authors use eddy covariance measurements from 48 global sites to demonstrate seasonal hysteresis in methane-temperature relationships and suggest the importance of microbial processes.