JMIR Cardio (Dec 2020)

A Novel Virtual Reality Medical Image Display System for Group Discussions of Congenital Heart Disease: Development and Usability Testing

  • Kim, Byeol,
  • Loke, Yue-Hin,
  • Mass, Paige,
  • Irwin, Matthew R,
  • Capeland, Conrad,
  • Olivieri, Laura,
  • Krieger, Axel

DOI
https://doi.org/10.2196/20633
Journal volume & issue
Vol. 4, no. 1
p. e20633

Abstract

Read online

BackgroundThe complex 3-dimensional (3D) nature of anatomical abnormalities in congenital heart disease (CHD) necessitates multidisciplinary group discussions centered around the review of medical images such as magnetic resonance imaging. Currently, group viewings of medical images are constrained to 2-dimensional (2D) cross-sectional displays of 3D scans. However, 2D display methods could introduce additional challenges since they require physicians to accurately reconstruct the images mentally into 3D anatomies for diagnosis, staging, and planning of surgery or other therapies. Virtual reality (VR) software may enhance diagnosis and care of CHD via 3D visualization of medical images. Yet, present-day VR developments for medicine lack the emphasis on multiuser collaborative environments, and the effect of displays and level of immersion for diagnosing CHDs have not been studied. ObjectiveThe objective of the study was to evaluate and compare the diagnostic accuracies and preferences of various display systems, including the conventional 2D display and a novel group VR software, in group discussions of CHD. MethodsA total of 22 medical trainees consisting of 1 first-year, 10 second-year, 4 third-year, and 1 fourth-year residents and 6 medical students, who volunteered for the study, were formed into groups of 4 to 5 participants. Each group discussed three diagnostic cases of CHD with varying structural complexity using conventional 2D display and group VR software. A group VR software, Cardiac Review 3D, was developed by our team using the Unity engine. By using different display hardware, VR was classified into nonimmersive and full-immersive settings. The discussion time, diagnostic accuracy score, and peer assessment were collected to capture the group and individual diagnostic performances. The diagnostic accuracies for each participant were scored by two experienced cardiologists following a predetermined answer rubric. At the end of the study, all participants were provided a survey to rank their preferences of the display systems for performing group medical discussions. ResultsDiagnostic accuracies were highest when groups used the full-immersive VR compared with the conventional and nonimmersive VR (χ22=9.0, P=.01) displays. Differences between the display systems were more prominent with increasing case complexity (χ22=14.1, P<.001) where full-immersive VR had accuracy scores that were 54.49% and 146.82% higher than conventional and nonimmersive VR, respectively. The diagnostic accuracies provided by the two cardiologists for each participant did not statistically differ from each other (t=–1.01, P=.31). The full-immersive VR was ranked as the most preferred display for performing group CHD discussions by 68% of the participants. ConclusionsThe most preferred display system among medical trainees for visualizing medical images during group diagnostic discussions is full-immersive VR, with a trend toward improved diagnostic accuracy in complex anatomical abnormalities. Immersion is a crucial feature of displays of medical images for diagnostic accuracy in collaborative discussions.