Agronomy (Apr 2023)

An Increase in Solar Radiation in the Late Growth Period of Maize Alleviates the Adverse Effects of Climate Warming on the Growth and Development of Maize

  • Zhongbo Wei,
  • Dahong Bian,
  • Xiong Du,
  • Zhen Gao,
  • Chunqiang Li,
  • Guangzhou Liu,
  • Qifan Yang,
  • Aonan Jiang,
  • Yanhong Cui

DOI
https://doi.org/10.3390/agronomy13051284
Journal volume & issue
Vol. 13, no. 5
p. 1284

Abstract

Read online

Against the background of long-term climate change, quantifying the response of maize growth and development to climate change during critical growth stages will contribute to future decision-making in maize production. However, there have been few reports on the impact of climate change on maize dry matter accumulation and yield formation using long-term field trial data. In this study, field trial data from 13 agricultural meteorological stations in the Beijing–Tianjin–Hebei region from 1981 to 2017 were analyzed using partial correlation analysis and multiple regression models to investigate the effects of climate change on maize growth and yield. The results showed that the average temperature (Tavg) and accumulated effective precipitation (EP) during the maize growing season increased while the accumulated solar radiation (SRD) decreased from 1981 to 2017. During the seedling stage (GS1, VE-V8) and ear development stage (GS2, V8-R1), Tavg increased by 0.34 °C and 0.36 °C/decade, respectively, and EP increased by 1.83 mm and 3.35 mm/decade, respectively. The significant increase in Tavg during GS1 was the main reason for the inhibitory effect of climate change on maize growth, development, and biomass accumulation. However, the increase in SRD during the grain formation stage (GS3, R1–R3) and grain filling stage (GS4, R3–R6) was favorable for yield formation, increasing the grain number per ear (GN) and grain weight (GW) by 5.00% and 2.84%, respectively. SRD significantly increased after the silk stage, partially offsetting the adverse effects of temperature on maize yield formation, but the final result was a 0.18% and 0.94% reduction in maize plant dry weight (TDW) and grain yield (GY), respectively, due to the combined effects of the three climate factors. Spatially, climate change mainly had a negative impact on maize in the eastern and western parts of the central region of Beijing–Tianjin–Hebei, with a maximum GY reduction of up to 34.06%. The results of this study can provide a scientific basis for future decision-making in maize production against the background of climate change.

Keywords