Water (Aug 2024)
Impact of Design and Mixing Strategies on Biogas Production in Anaerobic Digesters
Abstract
Anaerobic digestion (AD) is a biological process that breaks down organic matter in the absence of oxygen, producing biogas and nutrient-rich digestate. Various reactor designs and mixing strategies are well-established in AD processes, each with their own advantages and benefits. The presented study summarizes and investigates the state of the art of AD in domestic wastewater treatment plants (WWTPs) in an Austrian alpine region, with a primary focus on finding similarities among the most efficient plants regarding digester design, mixing approaches, and biogas production. By combining surveys and detailed field studies in cooperation with 34 WWTPs, the study provides a comprehensive overview of common AD practices, reactor shapes, and inherent mixing methods, highlighting their potential regarding energetic efficiency and biogas production. The results of the survey reveal qualitative trends in efficient AD design alongside detailed quantitative data derived from the supervised in-field optimization studies. Notably, one of the studies demonstrated energetic savings of 52% with no decrease in biogas production, achieved by transitioning from gas injection to mechanical agitation. Redundant impeller-based overmixing was also practically investigated and demonstrated in another field study. After optimization, the adaptations also resulted in energy savings of 30%, still proving sufficient substrate mixing with biomethane potential analysis. In conclusion, this research emphasizes the economic and environmental importance of energy-refined practices and optimized processes while highlighting the sustainability of AD, particularly for large domestic WWTPs but also for different comparable applications.
Keywords