Advances in Difference Equations (Jan 2009)

A Global Description of the Positive Solutions of Sublinear Second-Order Discrete Boundary Value Problems

  • Ruyun Ma,
  • Youji Xu,
  • Chenghua Gao

DOI
https://doi.org/10.1155/2009/671625
Journal volume & issue
Vol. 2009

Abstract

Read online

Let Tβˆˆβ„• be an integer with T>1, 𝕋:={1,…,T}, 𝕋^:={0,1,…,T+1}. We consider boundary value problems of nonlinear second-order difference equations of the form Ξ”2u(tβˆ’1)+Ξ»a(t)f(u(t))=0, tβˆˆπ•‹, u(0)=u(T+1)=0, where a:𝕋→ℝ+, f∈C([0,∞),[0,∞)) and, f(s)>0 for s>0, and f0=f∞=0, f0=lim⁑sβ†’0+f(s)/s, f∞=lim⁑sβ†’+∞f(s)/s. We investigate the global structure of positive solutions by using the Rabinowitz's global bifurcation theorem.