Energies (Apr 2023)
Gas Hydrates Reserve Characterization Using Thermo-Hydro-Mechanical Numerical Simulation: A Case Study of Green Canyon 955, Gulf of Mexico
Abstract
The Gulf of Mexico is a widely explored and producing region for offshore oil and gas resources, with significant submarine methane hydrates. Estimates of hydrate saturation and distribution rely on drilling expeditions and seismic surveys that tend to provide either large-scale estimates or highly localized well data. In this study, hydrate reserve characterization is done using numerical simulation at Green Canyon block 955 (GC955). In addition, coupled thermo-hydro-mechanical (THM) simulation results show that hydrate saturation and geobody distribution are determined by the thermodynamic conditions as well as reservoir structures, stratigraphic differences, and permeability differences. Hydrate formation due to upflow of free gas and dissociation due to gas production and oceanic temperature rise due to climate change are simulated. The abundance of free gas under the hydrate stability zone and favorable pressure and temperature meant little hydrate was depleted from the reservoir. Furthermore, the maximum displacement due to warming reached 0.5 m in 100 years and 4.2 m in 180 days based on a simulation of constant production of methane gas. The displacement direction and magnitude suggest that there is little possibility of slope failure. Therefore, the GC955 site studied in this paper can be considered a favorable site for potential hydrate exploitation.
Keywords