PLoS ONE (Jan 2012)

Transcriptome of protoplasts reprogrammed into stem cells in Physcomitrella patens.

  • Lihong Xiao,
  • Liechi Zhang,
  • Ge Yang,
  • Honglin Zhu,
  • Yikun He

DOI
https://doi.org/10.1371/journal.pone.0035961
Journal volume & issue
Vol. 7, no. 4
p. e35961

Abstract

Read online

BackgroundDifferentiated plant cells can retain the capacity to be reprogrammed into pluripotent stem cells during regeneration. This capacity is associated with both cell cycle reactivation and acquisition of specific cellular characters. However, the molecular mechanisms underlying the reprogramming of protoplasts into stem cells remain largely unknown. Protoplasts of the moss Physcomitrella patens easily regenerate into protonema and therefore provide an ideal system to explore how differentiated cells can be reprogrammed to produce stem cells.Principal findingsWe obtained genome-wide digital gene expression tag profiles within the first three days of P. patens protoplast reprogramming. At four time-points during protoplast reprogramming, the transcript levels of 4827 genes changed more than four-fold and their expression correlated with the reprogramming phase. Gene ontology (GO) and pathway enrichment analysis of differentially expressed genes (DEGs) identified a set of significantly enriched GO terms and pathways, most of which were associated with photosynthesis, protein synthesis and stress responses. DEGs were grouped into six clusters that showed specific expression patterns using a K-means clustering algorithm. An investigation of function and expression patterns of genes identified a number of key candidate genes and pathways in early stages of protoplast reprogramming, which provided important clues to reveal the molecular mechanisms responsible for protoplast reprogramming.ConclusionsWe identified genes that show highly dynamic changes in expression during protoplast reprogramming into stem cells in P. patens. These genes are potential targets for further functional characterization and should be valuable for exploration of the mechanisms of stem cell reprogramming. In particular, our data provides evidence that protoplasts of P. patens are an ideal model system for elucidation of the molecular mechanisms underlying differentiated plant cell reprogramming.