Energies (Dec 2023)

Structure and Thermoelectric Characterization of p-Type SnTe Nanobulk Material Synthesized by Charge Compensation Chemical Reaction

  • Ryosuke Fujiwara,
  • Yuta Ikeda,
  • Takuto Kawaguchi,
  • Yohei Takashima,
  • Takaaki Tsuruoka,
  • Kensuke Akamatsu

DOI
https://doi.org/10.3390/en17010190
Journal volume & issue
Vol. 17, no. 1
p. 190

Abstract

Read online

SnTe is the most widely studied p-type thermoelectric (TE) alternative to PbTe. In this study, we prepared a nanostructured SnTe bulk material via spark plasma sintering from a precursor synthesized by a chemical precipitation process without using organic molecules. The sintered sample comprised tiny grains (100–300 nm) with high-density grain boundaries. Eventually, because the material would contain no impurities acting as scattering nodes of charge carriers, the material exhibited a relatively high electrical conductivity of 7.07 × 105 Sm−1 at 310 K. The material demonstrated low lattice thermal conductivity (0.87 Wm−1K−1 at 764 K), which can be owing to the increasing phonon scattering at grain boundaries. The maximum ZT was 0.31 at 764 K in the measured temperature range. This study provides a method for the design of phase-pure and surfactant-free SnTe thermoelectric materials that exhibit low lattice thermal conductivity and high carrier mobility using a chemical synthetic approach.

Keywords