Energies (Oct 2019)

Research on Double-Layer Optimized Configuration of Multi-Energy Storage in Regional Integrated Energy System with Connected Distributed Wind Power

  • Quanming Zhang,
  • Zhichao Ren,
  • Ruiguang Ma,
  • Ming Tang,
  • Zhongxiao He

DOI
https://doi.org/10.3390/en12203964
Journal volume & issue
Vol. 12, no. 20
p. 3964

Abstract

Read online

With the wide application of multi-energy storage technology in the regional integrated energy system, the configuration of multi-energy storage devices is expected to enhance the economic benefits of regional integrated energy systems. To start with, in this paper, the basic framework of the regional integrated energy system is constructed, and a mathematical model of micro-gas turbine, gas boiler, distributed wind power and multi-energy storage device is established. Then, the multi-energy storage and double-layer planning configuration model with multi-energy complementation is established. The upper level of the model aims to minimize the comprehensive investment cost of multi-energy storage, while the lower level of the model aims to minimize the comprehensive systematic operating cost, in which the net losses cost is also included and the required multi-energy storage capacity from the upper level is set as its constraint. During the programming and problem solving, the second-order conic relaxation technology is introduced to realize the convex relaxation for power flow constraint. At the same time, the piecewise linearization method is adopted to deal with the natural gas pipeline flow constraint, which can convert the original model into a mixed integer programming problem. In the end, the example analysis is carried out in the IEEE 33-bus system and the improved 6-node natural gas system. The results show that the multi-energy storage technology can improve the economics of the regionally integrated energy system to a certain extent, and have verified the validity of the model.

Keywords