Journal of Inequalities and Applications (Feb 2020)
Some properties of pre-quasi norm on Orlicz sequence space
Abstract
Abstract In this article, we introduce the concept of pre-quasi norm on E (Orlicz sequence space), which is more general than the usual norm, and give the conditions on E equipped with the pre-quasi norm to be Banach space. We give the necessity and sufficient conditions on E equipped with the pre-quasi norm such that the multiplication operator defined on E is a bounded, approximable, invertible, Fredholm, and closed range operator. The components of pre-quasi operator ideal formed by the sequence of s-numbers and E is strictly contained for different Orlicz functions are determined. Furthermore, we give the sufficient conditions on E equipped with a pre-modular such that the pre-quasi Banach operator ideal constructed by s-numbers and E is simple and its components are closed. Finally the pre-quasi operator ideal formed by the sequence of s-numbers and E is strictly contained in the class of all bounded linear operators, whose sequence of eigenvalues belongs to E.
Keywords