iScience (Jan 2023)

Optimal high-throughput virtual screening pipeline for efficient selection of redox-active organic materials

  • Hyun-Myung Woo,
  • Omar Allam,
  • Junhe Chen,
  • Seung Soon Jang,
  • Byung-Jun Yoon

Journal volume & issue
Vol. 26, no. 1
p. 105735

Abstract

Read online

Summary: As global interest in renewable energy continues to increase, there has been a pressing need for developing novel energy storage devices based on organic electrode materials that can overcome the shortcomings of the current lithium-ion batteries. One critical challenge for this quest is to find materials whose redox potential (RP) meets specific design targets. In this study, we propose a computational framework for addressing this challenge through the effective design and optimal operation of a high-throughput virtual screening (HTVS) pipeline that enables rapid screening of organic materials that satisfy the desired criteria. Starting from a high-fidelity model for estimating the RP of a given material, we show how a set of surrogate models with different accuracy and complexity may be designed to construct a highly accurate and efficient HTVS pipeline. We demonstrate that the proposed HTVS pipeline construction and operation strategies substantially enhance the overall screening throughput.

Keywords