Journal of Lipid Research (Feb 1995)
Effect of apolipoprotein A-I deficiency on lecithin:cholesterol acyltransferase activation in mouse plasma.
Abstract
Plasma cholesteryl ester (CE) synthesis by lecithin cholesterol acyltransferase (LCAT) is activated by apolipoprotein (apo)A-I. We studied the effect of plasma apoA-I concentration on LCAT activation, using normal, heterozygous or homozygous apoA-I-deficient mice made by gene targeting. Plasma esterified cholesterol concentrations of mice fed chow diets were ordered (mean +/- SEM): 105 +/- 7 (normal) > 70 +/- 5 (heterozygotes) > 26 +/- 2 (homozygotes) mg/dl. Plasma free cholesterol concentrations were similar among the three genotypes. Endogenous LCAT activity, measured as the decrease in plasma free cholesterol after a 1 h incubation at 37 degrees C, was ordered: 44 +/- 3 (normal) > 21 +/- 2 (heterozygotes) > 5 +/- 1 (homozygotes) nmol CE formed/h per ml plasma. Using a recombinant exogenous substrate consisting of egg yolk phospholipid, [14C]cholesterol, and apoA-I, CE formation of normals and heterozygotes was similar (27.4 +/- 0.6 and 28.8 +/- 1.3 nmol/h per ml plasma, respectively), but was significantly less for homozygotes (19.2 +/- 1.7 nmol/h per ml plasma). However, using a small unilamellar vesicle substrate particle containing phospholipid and [14C]cholesterol, CE formation was ordered: 1.6 +/- 0.1 (normal) = 1.6 +/- 0.1 (heterozygotes) > 0.6 +/- 0.1 (homozygotes) nmol/h per ml plasma; addition of apoA-I to the plasma of homozygous animals restored CE formation to normal levels (1.6 +/- 0.1). CE fatty acid analysis demonstrated that plasma from homozygous mice contained significantly more saturated and monounsaturated and fewer polyunsaturated fatty acids compared to normal and heterozygous mice.(ABSTRACT TRUNCATED AT 250 WORDS)