Buildings (Apr 2024)
Utilization of Copper–Molybdenum Tailings to Enhance the Compressive Strength of Alkali-Activated Slag-Fly Ash System
Abstract
Utilizing a variety of solid wastes to prepare alkali-activated cementitious materials is one of the principal trends in the development of cementitious materials. Commonly used alkali activation precursors such as granulated blast furnace slag (GBFS) and fly ash (FA) will be less available due to resource pressures. Supply limitation is an important reason to research alternative precursors. To realize the high value-added utilization of copper–molybdenum tailings (CMTs), this study adopted the modified sodium silicate solution as an alkaline activator to activate GBFS-FA-CMTs cementitious system to prepare alkali-activated cementitious materials. The influence of CMTs content on the compressive strength of GBFS-FA-CMTs cementitious system was analyzed, and the mechanism of GBFS-FA-CMTs cementitious system was also analyzed through hydration product types, physical phase composition, and microscopic morphology. The results indicated that a paste with the incorporation of CMTs, S50F30C20 (50% GBFS, 30% FA, 20% CMTs), achieved the highest compressive strength of 79.14 MPa, which was due to the filling effect of the CMTs and the degree of participation in the reaction. Pastes with different contents of CMTs, while maintaining a constant CBFS content, exhibited similar strength development. Excessive amounts of CMTs could result in reduced compressive strength. Microstructural analysis revealed that the hydration products were structurally altered by the addition of CMTs. In addition to ettringite, quartz, C(-N)-S-H gel, and calcite, gaylussite was also formed; moreover, the mass of chemically bound water increased, and the microstructure of reaction products became denser. An excess of CMTs may restrict the growth of the hydration gel, leading to more microstructural defects. The study suggests that CMTs could enhance the compressive strength of hardened paste within an alkali-activated slag-fly ash system, possibly due to a filling effect and participation in the chemical reaction. This research confirms the feasibility of using CMTs in alkali-activated cementitious materials.
Keywords