Axioms (Mar 2023)

Stabilization of the Moving Front Solution of the Reaction-Diffusion-Advection Problem

  • Nikolay Nefedov,
  • Elena Polezhaeva,
  • Natalia Levashova

DOI
https://doi.org/10.3390/axioms12030253
Journal volume & issue
Vol. 12, no. 3
p. 253

Abstract

Read online

We consider the initial-boundary value problem of reaction-diffusion-advection that has a solution of a front form. The statement comes from the theory of wave physics. We study the question of the solution stabilizing to the stationary one. Proof of the stabilization theorem is based on the concepts of upper and lower solutions and corollaries from comparison theorems. The upper and lower solutions with large gradients are constructed as modifications of the formal moving front asymptotic approximation in a small parameter. The main idea of the proof is to show that the upper and lower solutions of the initial-boundary value problem get into the attraction domain of the asymptotically stable stationary solution on a sufficiently large time interval. The study conducted in this work gives an answer about the non-local attraction domain of the stationary solution and can give some stationing criteria. The results are illustrated by computational examples.

Keywords