Neural Plasticity (Jan 2012)

Hippocampal Dendritic Spines Modifications Induced by Perinatal Asphyxia

  • G. E. Saraceno,
  • R. Castilla,
  • G. E. Barreto,
  • J. Gonzalez,
  • R. A. Kölliker-Frers,
  • F. Capani

DOI
https://doi.org/10.1155/2012/873532
Journal volume & issue
Vol. 2012

Abstract

Read online

Perinatal asphyxia (PA) affects the synaptic function and morphological organization. In previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia leading to long-term ubi-protein accumulation. Since F-actin is highly concentrated in dendritic spines, modifications in its organization could be related with alterations induced by hypoxia in the central nervous system (CNS). In the present study, we investigate the effects of PA on the actin cytoskeleton of hippocampal postsynaptic densities (PSD) in 4-month-old rats. PSD showed an increment in their thickness and in the level of ubiquitination. Correlative fluorescence-electron microscopy photooxidation showed a decrease in the number of F-actin-stained spines in hippocampal excitatory synapses subjected to PA. Although Western Blot analysis also showed a slight decrease in β-actin in PSD in PA animals, the difference was not significant. Taken together, this data suggests that long-term actin cytoskeleton might have role in PSD alterations which would be a spread phenomenon induced by PA.