GIScience & Remote Sensing (Dec 2023)

Potential improvement of XCO2 retrieval of the OCO-2 by having aerosol information from the A-train satellites

  • Jaemin Hong,
  • Jhoon Kim,
  • Yeonjin Jung,
  • Woogyung Kim,
  • Hyunkwang Lim,
  • Sujong Jeong,
  • Seoyoung Lee

DOI
https://doi.org/10.1080/15481603.2023.2209968
Journal volume & issue
Vol. 60, no. 1

Abstract

Read online

Near-real time observations of aerosol properties could have a potential to improve the accuracy of XCO2 retrieval algorithm in operational satellite missions. In this study, we developed a retrieval algorithm of XCO2 (Yonsei Retrieval Algorithm; YCAR) based on the Optimal Estimation (OE) method that used aerosol information at the location of the Orbiting Carbon Observatory-2 (OCO-2) measurement from co-located measurement of the Afternoon constellation (A-train) such as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Observation (CALIPSO) and the MODerate-resolution Imaging Spectrometer (MODIS) onboard the Aqua. Specifically, we used optical depth, vertical profile, and optical properties of aerosol from MODIS and CALIOP data. We validated retrieval results to the Total Carbon Column Observing Network (TCCON) ground-based measurements and found general consistency. The impact of observed aerosol information and its constraint was examined by retrieval tests using different settings. The effect of using additional aerosol information was analyzed in connection with the bias correction process of the operational retrieval algorithm. YCAR using a priori aerosol loading parameters from co-located satellite measurements and less constraint of aerosol optical properties made comparable results with operational data with the bias correction process in three of the four cases subject to this study. Our work provides evidence supporting the bias correction process of operational algorithms and quantitatively presents the effectiveness of synergic use of multiple satellites (e.g. A-train) and better treatment of aerosol information.

Keywords