Applied Sciences (Apr 2024)

Ride Comfort Prediction on Urban Road Using Discrete Pavement Roughness Index

  • Difei Wu

DOI
https://doi.org/10.3390/app14073108
Journal volume & issue
Vol. 14, no. 7
p. 3108

Abstract

Read online

The prediction of ride comfort holds significant potential for enhancing the driving experience of both human drivers and autonomous vehicles, as it is closely correlated with pavement roughness. However, in urban road scenarios, the presence of shorter road segments and local irregularities introduces added complexity to ride comfort prediction. To better capture and characterize the irregularities and short road sections’ unevenness, we adopt the discrete roughness index (DRI) instead of the commonly used international roughness index (IRI) for assessing road profile unevenness, which is more suitable for urban roads. Ride comfort prediction is developed through numerical simulations using an eight-degree-of-freedom full-car model. The maximum transient vibration value (MTVV) is adopted to assess ride comfort. Through comparing the correlations between the MTVV and pavement roughness indices, it is indicated that the fitting degree of MTVV-DRI outperforms that of MTVV-IRI on short sections. Then, a set of speed-related DRI thresholds to estimate ride comfort distribution on a given road section is proposed, with considerations of vehicle speed, time period, and wheel paths. A hyperbolic-tangent-based speed control strategy is also proposed to avoid abrupt speed and acceleration changes during deceleration. This prediction method can assist drivers or autonomous vehicles in generating driving control strategies and maintaining a high level of ride comfort.

Keywords